移位运算 要点 1 它们都是双目运算符,两个运算分量都是整形,结果也是整形。 2 "<<" 左移:右边空出的位上补0,左边的位将从字头挤掉,其值相当于乘2。 3 ">>"右移:右边的位被挤掉。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。 4 ">>>"运算符,右边的位被挤掉,对于左边移出的空位一概补上0。
位运算符的应用 (源操作数s 掩码mask) (1) 按位与-- & 1 清零特定位 (mask中特定位置0,其它位为1,s=s&mask) 2 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask) (2) 按位或-- | 常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask) (3) 位异或-- ^ 1 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask) 2 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1) 目标 操作 操作后状态 a=a1^b1 a=a^b a=a1^b1,b=b1 b=a1^b1^b1 b=a^b a=a1^b1,b=a1 a=b1^a1^a1 a=a^b a=b1,b=a1
即 a ^= b b ^= a b ^= b 这样3步,即可交换两个数字 且没有占用空间.
二进制补码运算公式: (看到这些功能,似乎没必要了解补码的原理) -x = ~x + 1 = ~(x-1) ~x = -x-1 -(~x) = x+1 ~(-x) = x-1 x+y = x - ~y - 1 = (x|y)+(x&y) x-y = x + ~y + 1 = (x|~y)-(~x&y) x^y = (x|y)-(x&y) x|y = (x&~y)+y x&y = (~x|y)-~x x==y: ~(x-y|y-x) x!=y: x-y|y-x x< y: (x-y)^((x^y)&((x-y)^x)) x<=y: (x|~y)&((x^y)|~(y-x)) x< y: (~x&y)|((~x|y)&(x-y))//无符号x,y比较 x<=y: (~x|y)&((x^y)|~(y-x))//无符号x,y比较
应用举例 (1) 判断int型变量a是奇数还是偶数 a&1 = 0 偶数 a&1 = 1 奇数 (2) 取int型变量a的第k位 (k=0,1,2……sizeof(int)),即a>>k&1 (先右移再与1)
(3) 将int型变量a的第k位清0,即a=a&~(1<<k) (10000 取反后为00001 )
(4) 将int型变量a的第k位置1,即a=a|(1<<k)
(5) int型变量循环左移k次,即a=a<<k|a>>16-k (设sizeof(int)=16) (6) int型变量a循环右移k次,即a=a>>k|a<<16-k (设sizeof(int)=16) (7)整数的平均值 对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法:
- int average(int x, int y) //返回X、Y的平均值
- {
- return (x & y) + ( (x^y)>>1 );
- }
(8)对于一个数 x >= 0,判断是不是2的幂。
- boolean power2(int x)
- {
- return ( (x&(x-1))==0) && (x!=0);
- }
(9)不用temp交换两个整数
- void swap(int x , int y)
- {
- x ^= y;
- y ^= x;
- x ^= y;
- }
(10)计算绝对值
- int abs( int x )
- {
- int y ;
- y = x >> 31 ;
- return (x^y)-y ; //or: (x+y)^y
- }
(11)取模运算转化成位运算 (在不产生溢出的情况下)
a % (2^n) 等价于 a & (2^n - 1) (12)乘法运算转化成位运算 (在不产生溢出的情况下) a * (2^n) 等价于 a<< n (13)除法运算转化成位运算 (在不产生溢出的情况下) a / (2^n) 等价于 a>> n 例: 12/8 == 12>>3 (14) a % 2 等价于 a & 1 (15) if (x == a)x= b;
else x= a; 等价于 x= a ^ b ^ x; (16) x 的 相反数 表示为 (~x+1) (17)输入2的n次方:1 << 19 (18)乘除2的倍数:千万不要用乘除法,非常拖效率。只要知道左移1位就是乘以2,右移1位就是除以2就行了。比如要算25 * 4,用25 << 2就好啦
实例 功能 | 示例 | 位运算 ----------------------+---------------------------+-------------------- 去掉最后一位 | (101101->10110) | x >> 1 在最后加一个0 | (101101->1011010) | x < < 1 在最后加一个1 | (101101->1011011) | x < < 1+1 把最后一位变成1 | (101100->101101) | x | 1 把最后一位变成0 | (101101->101100) | x | 1-1 最后一位取反 | (101101->101100) | x ^ 1 把右数第k位变成1 | (101001->101101,k=3) | x | (1 < < (k-1)) 把右数第k位变成0 | (101101->101001,k=3) | x & ~ (1 < < (k-1)) 右数第k位取反 | (101001->101101,k=3) | x ^ (1 < < (k-1)) 取末三位 | (1101101->101) | x & 7 取末k位 | (1101101->1101,k=5) | x & ((1 < < k)-1) 取右数第k位 | (1101101->1,k=4) | x >> (k-1) & 1 把末k位变成1 | (101001->101111,k=4) | x | (1 < < k-1) 末k位取反 | (101001->100110,k=4) | x ^ (1 < < k-1) 把右边连续的1变成0 | (100101111->100100000) | x & (x+1) 把右起第一个0变成1 | (100101111->100111111) | x | (x+1) 把右边连续的0变成1 | (11011000->11011111) | x | (x-1) 取右边连续的1 | (100101111->1111) | (x ^ (x+1)) >> 1 去掉右起第一个1的左边 | (100101000->1000) | x & (x ^ (x-1)) 判断奇数 (x&1)==1 判断偶数 (x&1)==0